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To not get lost in space over time, let’s
Use a mind map
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Today’s subject: Transformers
(Encoder-only and Encoder-Decoder)
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Recap of Transformer architecture

@® The main components
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Recap of Attention mechanism

@® Scaled Dot-Product attention Scaled Dot-Product Attention
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Recap of Attention mechanism

® Multi-head attention

MultiHead(Q, K,V) = Concat(heady, ..., heady, )W©°

head; = Attentz’on(QW’iQ, KWE vwY)
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BERT: Encoder-Only, Bidirectional Architecture

Encoder-only: processes text to produce
representations in the latent space
Bidirectional: it reads text both left-to-right
and right-to-left for deeper context
Masked Language Modeling (MLM): trains
by predicting missing words in sentences
Self-attention: focuses on important parts
of text regardless of word position
Pre-trained: fine-tuned for specific tasks
with minimal extra training

Next Sentence Prediction: Learns
relationships between consecutive
sentences
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T5: Encoder-Decoder Architecture

Encoder-Decoder: transforms input text into
latent representations (encoder) and generates
output text (decoder)

Text-to-Text: converts all tasks (translation,
summarization, etc.) into a text-to-text format
Pre-trained on Span Corruption: Trains by
masking spans of text and predicting the
missing content

Bidirectional Encoding: the encoder reads text
in both directions for better understanding
Decoder Attention: uses self-attention and
cross-attention for generating accurate
outputs

Fine-tuned for Multiple Tasks: Adaptable to
various NLP tasks with additional task-specific
training
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Decoding Strategies



Decoding Strategies

@® Crucial for determining text quality and characteristics.
@® Dictate how the model chooses the next word.
® Influence coherence, diversity, and relevancy of the output.



Most Common Decoding Strategies

® Greedy Decoding:
O Selects the word with the highest probability at each step.
O Fast and efficient but may lead to repetitive text.
@® Beam Search:
O Considers multiple possibilities (“beam width”) at each step.
O Keeps track of the most probable sequences; more
computationally intensive.



Most Common Decoding Strategies

® Top-k Sampling:
O Chooses the next word from the top k most likely candidates.
O Introduces randomness, enhancing diversity in text.
@® Top-p (Nucleus) Sampling:
O Selects words from the smallest set whose cumulative
probability exceeds threshold p.

O Balances randomness with high probability, improving coherence
and variety.



